

17 November 2016

RNAL TEN DIAMOND DRIL RESULTS DEMONSTRATE POTENTIAL TO EXPAND THE AUTHIERJ ORC RESOURCE

Highlights

- High-grade spodumene mineralisation intersected at shallow and deep levels
- New drilling expands high-grade zones of spodumene mineralisation throughout the deposit including, 23 metres @ $1.77 \% \mathrm{~L}_{2} \mathrm{O}$
- Drilling program has demonstrated the potential to expand the size of the JORC Resource
Sayona Mining Limited (ASX: SYA) ("Sayona" orthe "Company") is pleased to announce the a ssay results from the final ten diamond drill holes at the Authier lithium project, Quebec.
All the dia mond drill holeshave intercepted high-grade spodumene mineralisation with best drilling intercepts, inc luding:
- Hole 09-38 metres @ $1.10 \% \mathrm{Li}_{2} \mathrm{O}$ from 192 metres including, 23 metres @ $1.35 \% \mathrm{~L}_{2} \mathrm{O}$ from 192 metres;
- Hole 11 - 46 metres @ $1.26 \% \mathrm{Li}_{2} \mathrm{O}$ from 135 metres including, 24 metres @ $1.62 \% \mathrm{Li}_{2} \mathrm{O}$ from 137 metres;
- Hole 12-47 metres @ 1.05\% Li2 from 161 metres including, $27 \mathrm{~m} @ 1.31 \% \mathrm{~L}_{2} \mathrm{O}$ from 167 metres;
- Hole 13-24 metres @ 1.25\% Li $\mathrm{L}_{2} \mathrm{O}$ from 184 metres;
- Hole 14-45 metres @ $1.08 \% \mathrm{Li}_{2} \mathrm{O}$ from 148 metres including, 18 metres @ $1.34 \% \mathrm{Li}_{2} \mathrm{O}$ from 171 metres;
- Hole 015-20 metres @ 1.32\% Li2O from 242 metres;
- Hole 16-28 metres @ $1.20 \% \mathrm{Li}_{2} \mathrm{O}$ from 158 metres including, 18 metres @ $1.39 \% \mathrm{~L}_{2} \mathrm{O}$ from 162 metres; and
- Hole 17-45 metres @ $1.28 \% \mathrm{Li}_{2} \mathrm{O}$ from 190 metres including, 23 metres @ $1.77 \% \mathrm{Li}_{2} \mathrm{O}$ from 190 metres.
Six new drill holes have suc cessfully tested the deep extensions of mineralisation at the main Authier pegmatite, and four holes the geometry of the Authier pegmatite at shallow levels in the eastem and central sectors in order to upgrade the resource categories from indicated to measured.
The Company believes the new drilling has the potential to expand the size of the existing JORC Resource, and the mineralisation remains open in all directions. The Company is pleased with the combination of thickness and high-grades of spodumene intersections reported from the drilling program. More drilling is planned for early 2017.

MINING LIMITED

Phase 1 Diamond Drilling Program New Assay Summary

The Company hascompleted the phase 1 diamond drilling program at Authier including 18 holes for 3,967 metres with the objectives, including:

- Converting the inferred mineral resources to measured and indicated through further drilling;
- Exploring for extensions to the existing mineral resources and other potential mineralisation within the tenement package;
- Collecting geotechnical data for incomoration in the Authier Feasibility Studies; and
- Collecting drill core for any additional metallurgical testing that may be required to complete a Definitive Feasibility study, planned for 2017.

The final diamond drill holes (see Table 1) have all intersected high-grade spodumene mineralisation, including:

- AL-16-008 (East zone) - 36 metres @ 0.93 \% Li2O from 162 metres including, 10 metres @ 1.32 \% Li2O from 163 metres;
- AL-16-009 (West zone) - 38 metres @ 1.10 \% Li2O from 192 metres including, 23 metres @ 1.35 \% Li2O from 192 metres;
- AL-16-011 (West zone) - 46 metres @ 1.26 \% Li20 from 135 metres including, 24 metres @ 1.62 \% Li2O from 137 metres;
- AL-16-012 (East zone) - 47 metres @ 1.05 \% Li2O from 161 metres including, 27 metres @ 1.31 \% Li2O from 167 metres;
- AL-16-013 (West zone deep) - 24 metres @ 1.25 \% Li2O from 184 metres and 8 metres @ 0.91 \% Li2O from 216 metres;
- AL-16-014 (East zone) - 45 metres @ 1.08 \% Li2O from 148 metres including, 8 metres @ 1.36 \% Li2O from 149 metres and 18 metres @ 1.34% Li2O from 171 metres;
- AL-16-015 (West zone, 50 metres step-back of hole AL-16-013) - 20 metres @ 1.32 \% Li2O from 242 metres including, 11 metres @ 1.61 \% Li2O from 248 metres;
- AL-16-016 (Middle of G ap Zone) - 28 metres @ 1.20 \%Li2O from 158 metres including, 18 metres @ 1.39 \% Li2O from 162 metres;
AL-16-017 (West Zone Deep) - 45 metres @ 1.28% Li2O from 190 metres including, 23 metres @ 1.77 \% Li2O from 190 metres; and
- AL-16-018 (West edge of Gap Zone) - 10 metres @ 1.20% Li2O from 218 metresincluding, 6 metres @ 1.48% Li2O from 219 metres and two upper intervals of $4 \mathrm{~m} @ 0.99 \%$ Lن 20 from 197 metres and 7 m @ 0.95% Li2O from 206 metres.
The lithium mineralisation at Authier project is related to multiple pulses of spodumene bearing quartz-feldspar pegmatite. Higher lithium grades are related with high concentrations of mid to coarse spodumene crystals (up to 4 cm long axis) in a mid to coarse grained pegmatite facies.

Figure 1: Drill hole collar location plan

Overall Summary of the Drilling Program

The drilling program has successfully achieved the overall objective, including:

- Increasing the size of the potential resource and improving confidence in the J ORC Mineral Resource categories;
- Gaining a deeper understanding of the upside resource potential;
- Demonstrating the potential for improving the grade of the overall resource; and
- Improving the knowledge of the geotechnical conditions for incorporation into the Pre-Feasibility Study.

The following points summarise the outcome of each of the holesdrilled during the program:

- Holes 01, 02, 06 and 07 have successfully tested the geometry of the Authier pegmatite at shallow levels in the eastem and central sectors in order to upgrade the resource categories from indicated to measured;
- Hole 16 has intersected a thick zone of spodumene mineralisation in the gap zone, between eastem and westem zones of main pegmatite. This area which was previously interpreted not to contain any mineralisation and will provide a meaningful increase in the JORC resource;
- Holes 03, 04, 05, 08, 10, 12 and 14 have extended the lithium mineralisation in the eastem sector of main Authier pegmatite beyond 200 metres of vertic al depth;
- Hole 10 intercepted a new pegmatite at shallow levels between 15 to 22 metres downhole depth, not visible from surface, located 400 metres north of main Authier pegmatite. Such pegmatite retumed high grade lithium mineralisation (see "High-grade Mineralisation in the New Pegmatite Discovered at Authier", 08 November 2016); and
- Holes 09, 11, 13, 15, 17 and 18 have extended the lithium mineralisation in the westem sector of the main Authier pegmatite beyond 200 metres of vertical depth.
A new JORC Resource incomorating all the new assay results is being prepared and will be incorporated into the Pre-Feasibility Study which is underway.
The mineralisation remains open in all directions. Follow up drilling is being planned for early 2017 with the objectives, including:
- Defining the mineralised boundaries and lifting the resource categories in the westem sec tor that was not accessible during the summer months;
- Testing for mineralisation in the east and west strike extensions; and
- Assessing the resource potential of the new northem pegmatite. Any new mineralisation within the new pegmatite is likely to fall within the main Authier open-cut pit shell. Any new resources will signific antly improve the waste to ore ratio in a future operation.

Table 1 - Dill hole collar location and intercept information (downhole Intersections in metres)

Drill Hole	East	North	RL	Azimuth	Dip	Depth	From (m)	To (m)	Thickness (m)	Grade $(\% \mathrm{Li} 2 \mathrm{)})$
AL-16-001	707525	5360175	330	180	-45	87	12	74	62	1.35
including							27	43	16	1.65
AL-16-002	707525	5360245	330	180	-45	111	50	99	49	1.18
including							81	98	17	1.49
AL-16-003	707600	5360500	331	180	-55	267	170	197	27	1.46
including							181	192	11	1.66
							213	223	10	1.24
including							218	221	3	1.63
AL-16-004	707525	5360430	331	180	-55	246	156	206	50	1.13
including							157	168	11	1.4
							200	205	5	1.89
AL-16-005	707500	5360520	332	180	-55	294	197	202	5	1.44
							218	243	25	1.08
including							218	232	14	1.18
AL-16-006	707650	5360210	330	180	-45	105	16	60	44	1.02

Drill Hole	East	North	RL	Azimuth	Dip	Depth	From (m)	To (m)	Thickness (m)	$\begin{gathered} \text { Grade } \\ \text { (\%Li2O) } \end{gathered}$
including							16	35	19	1.45
AL-16-007	707479	5360174	330	180	-45	90	3.81	44	40.19	1.27
including							13	33	20	1.47
AL-16-008	707475	5360425	330	180	-60	234	162	198	36	0.93
including							163	173	10	1.32
AL-16-009	707245	5360478	330	180	-60	249	192	230	38	1.1
including							192	215	23	1.35
AL-16-010	707500	5360580	330	180	-55	330	15	22	7	1.36
including							17	19	2	2.24
							236	241	5	1.36
							258	266	8	0.85
including							264	266	2	1.42
AL-16-011	707220	5360420	330	180	-65	204	135	181	46	1.26
including							137	161	24	1.62
AL-16-012	707500	5360460	331	180	-55	240	161	208	47	1.05
including							167	194	27	1.31
AL-16-013	707175	5360478	331	180	-60	234	184	208	24	1.25
							216	224	8	0.91
AL-16-014	707600	5360440	331	180	-55	241	148	193	45	1.08
including							149	157	8	1.36
							171	189	18	1.34
							203	207	4	1.65
AL-16-015	707175	5360550	330	180	-60	279	242	262	20	1.32
including							248	259	11	1.61
AL-16-016	707400	5360425	331.47	180	-60	252	158	186	28	1.2
including							162	180	18	1.39
AL-16-017	707280	5360500	330	180	-60	240	190	235	45	1.28
including							190	213	23	1.77
AL-16-018	707318	5360465	330	170	-55	264	197	201	4	0.99
							206	213	7	0.95
							218	228	10	1.2
including							219	225	6	1.48

Note: Downhole widths are not true widths.

Formore information, please contact:
Chief Executive Officer
Phone: +61 (7) 33697058
Email: info@sayonamining.com.au
Sayona Mining Limited is an Australian, ASX-listed (SYA), company focused on sourcing and developing the raw materials required to construct lithium-ion batteries for use in the rapidly growing new and green technology sectors.

The Company's primary focus is the development of the advanced stage Authier lithium project in Quebec, Canada. Authier mineralisation is hosted in a spodumene-bearing pegmatite intrusion with more than 18,000 metres of drilling in 139 holes.

The Authier JORC compliant Mineral Resource estimate is tabulated below at a $0.5 \% \mathrm{~L} 20$ cut-off grade.

AuthierJ ORC Mineral Resources Estimate ($0.5 \% \mathrm{H}_{2} \mathbf{0}$ cut-off grade)

Category	Million Tonnes	Grades $\mathbf{L}_{\mathbf{2}} \mathbf{0}$	Contained $\mathbf{L}_{\mathbf{2}} \mathbf{0}$
Measured	2.08	0.95%	19,730
Indicated	5.16	0.97%	50,092
Infered	1.88	0.93%	17,480
Total	$\mathbf{9 . 1 2}$	$\mathbf{0 . 9 6 \%}$	$\mathbf{8 7 , 3 0 2}$

Cautionary Note - Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into a Mineral Reserves estimate.

Authier is amenable to simple open-cut mining and processing methods, and is situated in close proximity to development infrastructure. The Company is currently completing a prefeasibility study due for completion in late 2016.
In addition, the Company controlsa portfolio of lithium and graphite exploration projects in Westem Australia.

Please visit us as at www.sayonamining.com.au

Reference to Previous ASX Releases

This release refers to the following previous ASX releases:

- "Authier J ORC Resources", 5 J uly 2016;
- "Authier Lithium Project Drilling Commenced", 08 September 2016;
- "New mineralised spodumene pegmatite discovered at Authier", 11 October 2016;
- "Update on Authier Drilling Program", 20 Oc tober 2016;
- "High-grade Lithium Intersected over Large Widths during Authier drilling", 24 October 2016;
- "Drilling Intersects Thick Zone of Mineralisation in Authier's G ap Zone", 25 October 2016;
- "High-grade Lithium Intersections Extend Zone of Mineralisation at Authier", 03 November 2016; and
- "High-grade Mineralisation in the New Pegmatite Discovered at Authier", 08 November 2016.

The Company confims that it is not aware of any new information or data that materially affects the information included in the original market announcement and all material assumptions and technical parameters continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's find ings a re presented have not been materially modified from the original market a nnouncements.

COMPEIENTPERSON STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Dr Gustavo Delendatti, a member of the Australian Institute of Geosc ientists. Dr Delendatti is an independent consultant, and has suffic ient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which it is underta king to qualify a sa Competent Person as defined in the J ORC C ode (2012 Edition) of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Dr Delendatti was responsible for the design and conduct of thisexploration drilling campaign, supervised the preparation of the technical information in this release and has relevant experience and competence of the subject matter. Dr Delendatti, as competent person for this a nnouncement, has consented to the inclusion of the information in the form and context in which it appears herein.

JORC Code, 2012 Edition - Table 1 - Section 1 Sampling Techniques and Data

(C riteria in this section a pply to all succeeding sections.)

Criteria	JORC Code explanation	Commentay
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain	- All holes reported in this program have been Diamond Core Drillholes (DDH). - Diamond core typical sample length is 1.0 metre starting 2 to 3 metres above and below of the contact of the pegmatite with the barren host rock. - High to low grade lithium-bearing mineralisation (spodumene) is visible during geological logging and sampling. - The core selected for sampling was split and samples of half core were dispatched to a certified commercial laboratory for preparation and analysis of lithium according to industry standard practices. Sample preparation and assaying techniques are within industry standard and appropriate for this type of mineralisation.

Criteria	JORC Code explanation	Commentar
		(spodumene pegmatite) and surrounding barren host rock has been logged, sampled and assayed. The footwall and hanging wall barren host rock has been summary logged.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Drill core HQ diameter samples cut to two halves with one half placed in a new plastic bag along with the sample tag sent for analysis; the other half was replaced in the core box with the second sample tag for reference. - Sampling boundaries are based in geological contacts of spodumene-bearing pegmatite with barren host rock. - In general at least two host rock sample was collected each side from the contacts with the mineralised pegmatite. - Sample preparation of drill core samples collected during the 2016 drilling program completed at the SGS Canada Inc laboratory ("SGS") facilities in Sudbury, Ontario follows industry best practice, involving oven drying, crushing and pulverizing there to respect the specifications of the analytical protocol and then shipped to SGS Mineral Services laboratories in Lakefield, Ontario, for analysis. - Sample sizes are considered appropriate.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	- Assaying of all 2016 drilling sample received at SGS were processed according to the following procedure at the SGS preparation facilities in Sudbury, Ontario. All samples are inspected and compared to the chain of custody (COC) and logged into the SGS laboratory management system, then weighted and dried. Sample material is crushed to 75% passing 10 mesh (2 mm), split to obtain a 250 g sub-sample which is then pulverized to 85% passing 200 mesh (75 microns). - The analyses were conducted at the SGS laboratory located in Lakefield, Ontario, which is an accredited laboratory under ISO/IEC 17025 standards accredited by the Standards Council of Canada. - The analytical protocol used at SGS Lakefield is the GE ICP90A 29 element analysis sodium peroxide fusion, which involves the complete dissolution of the sample in molten flux for ICP-AES analysis. The detection limits for Li are 10 ppm (lower) and 10,000 ppm

Criteria	JORC Code explanation	Commentary
		(upper). - No geophysical or handheld tools were used. - Quality control protocol ("QA/QC") involve a review of laboratory supplied internal QA/QC and in-house controls consisting in the insertion of in-house reference standards (high and low grade, prepared with material of the project and certified by lab round-robin) and samples of "barren" material (blanks), on a systematic basis with the samples shipped to SGS.
Venfication of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- All the pegmatite intersections and assay results have been reviewed by the Competent Person and Sayona's geologist and personnel. - Lithium (ppm) reported in assays is converted to Li2O by multiply Li $(\mathrm{ppm}) \times 2.153$ (conversion factor) - The entire drilling program conducted by Sayona in 2016 was logged by 2 geologists, a Sayona's employee and Sayona's Competent Person using technicians from the Company contracted Services Forestiers et d'Exploration GFE ("Services GFE"). Services GFE provided the office, core logging and storage facilities to the Company which are located less than 4 km southeast from the Authier project near the town of La Motte. - The core boxes were photographed and are available for verification at Services GFE storage facilities less than 4 km southeast from the Authier project. - No twinned holes were drilled during this 2016 drilling campaign by Sayona. - Primary data was recorded on laptop computers directly into standardized Excel logging templates with built in look-up codes. This information is merged with the assay certificate data into a Sayona's in-house database - No adjustments to assay data have been undertaken.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drill collar locations coordinates were surveyed using handheld Garmin GPS. Drill collar will be surveyed by professional surveyor at the end of this drilling campaign. - Collar positions previous to 2016 have been surveyed and the survey values are recorded as the final coordinates and hole orientation in the database by an independent and qualified land surveyor. - Downhole surveys (dip and azimuth) were

Criteria	JORC Code explanation	Commentary
collected as single shot readings using a		
Reflex tool. Measurements are made at the		
beginning (25 m below surface) and at the		
end of the hole length. An intermediate		
measure was done when drill hole length		
exceeded 150 m.		

Section 2 - Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as	- The Authier Lithium Property consists in one block of map designated claim cells located at the border between the La Motte Township and

Criteria	JORC Code explanation	Commentary
	joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	the Preissac Township, totalling 19 claims covering 653.57 ha. The Property extends 3.4 km in the east-west direction and 3.1 km northsouth. - From the 19 claims composing the Property, 3 claims were acquired by staking on November 27, 2009 (CDC 21955725) and July 9, 2010 (CDC 2240226 and 2240227), 15 claims were acquired through two separate purchasing agreements and one claim is held under an option agreement. Glen Eagle is conducting exploration work under valid intervention permits delivered by the Quebec Government, and there is no known environmental liabilities pertaining to the Property. Some of the claims containing mineral resources are subject to mining royalties - Approximately more than 75% of the mineral resources are present inside the 3 claims (CDC 2183454-2183455 and 2194819). About less than 25% of the estimated mineral resources are present inside the claim (CDC2116146). - The spodumene-bearing pegmatite intrusion is located on claims number CDC 2183455 , 2194819 and 2116146, and extends at surface between approximately $707,050 \mathrm{mE}$ and $707,775 \mathrm{mE}$ in the East-West direction, and between $5,359,975 \mathrm{mN}$ and $5,360,275 \mathrm{mN}$ in the North-South direction. - The Property is adjacent to a protected area reserved for groundwater catchment supply located just the north of the Property, which has been excluded for exploration and mining activities. - Sayona is conducting exploration work under valid forest intervention permit delivered by the provincial Ministère des Ressources Naturelles et de la Faune ("MRNF"). As of the date of this report, the Company confirmed having valid work permits.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- The Property has been explored in the 1950's and 1960's for volcanic nickel-copper sulfides mineralisation, and later for lithium mineralisation since the late 1960's with the discovery of a significant spodumene-bearing pegmatite intrusion. The Property saw significant amount of exploration work between 1966 and 1980 with delineation drilling programs from 1991 until 1999 with bulk sampling and metallurgical testing programs. - The project has more than 18,000 metres of drilling in 139 diamond holes, and 2,283 assay samples. The project was initially drilled

Criteria	JORC Code explanation	Commentar
		- Studying options for improving the project economics, including: - Operating and capital cost reductions (e.g. leasing and purchasing of second hand equipment); - Metallurgical optimization using latest technologies available like photometric sorting. - Downstream processing options including the production of high-value lithium carbonate; - Completion of an Environmental Impact Statement and Bankable Feasibility Study; - Negotiating production off-take agreements; and - Sourcing development finance and constructing the project.

